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Abstract 

The graph partitioning problem aims to partition the 

vertices of graph into a certain number of blocks in 

such a way that the edge cut is minimized and balance 

constraint that all blocks must be of the same weight 
should also be maintained. This paper is dedicated to 

the application of metaheuristics to the optimization of 

graph partitioning problem. Numerous adaptations of 

metaheuristics for partitioning of graphs have been 

proposed in last twenty years. In this paper State – of – 

the art methods which focuses on local as well as 

population-based metaheuristics are analyzed in depth.  

Keywords: Graph partitioning, Optimization technique,  

Swarm Intelligence 

I. Introduction 

Most of the real-life problems have several solutions 

and occasionally an infinite number of solutions may be 

possible. If the problem at hand admits more than one 

solution, optimization can be achieved by finding the 

best solution of the problem in terms of some 

performance criterion. The graph partitioning problem 

(GPP) deals with the partition of vertices in a certain 

number of blocks in such a way that the edge cut is 

minimized. While partitioning graph, a balance 

constraint that all blocks must be of the same weight 
should also be maintained. Thus, optimization 

techniques are considered necessary for best partition 

with optimized cut value. This paper focuses on local 

search optimization techniques like Simulated 

Annealing, Genetic Algorithm, Tabu Search, Random 

Walk, Neighborhood Search, Swarm intelligence-based 

Ant Colony Optimization, and Particle Swarm 

Optimization. These optimization techniques are 

characterized by the use of local search method, 

recursively applied to the solution of the problem. 

 
II. Optimization Techniques 

Multi-objective optimization (MOO) or vector 

optimization is the process of optimizing systematically 

and simultaneously a collection of objective functions 

[1]. 

Graph partitioning is a NP-hard problem with multiple 

conflicting objectives such as the inter-partition 

relationship should be minimized while maximizing the 

intra-partition relationship as well as balance constraint 

that all blocks must be of the same weight should also 

be maintained.  Hence graph partitioning is a multi-

objective optimization problem. The optimization 
techniques used in graph partitioning are described 

below: 

A. Simulated Annealing 

Simulated Annealing (SA) is a standard probabilistic 
metaheuristic for the global optimization problem of a 

given function in a large search space for locating a 

good approximation to the global optimum. It is 

frequently used when the search space is discrete. The 

main advantage of SA is its capability of moving to 

states of higher energies. Simulated Annealing can be 

effectively used in graph partitioning to find a balanced 
partition which can minimize edge cut. Kirkpatrick et 

al. [2] introduced simulated annealing to solve 

combinatorial optimization problem. Simulated 

annealing is tried and tested technique, which can be 

simply located in space, easy to locate in place and 

which often generates motivating results in short 

programming time. Hence it is an interesting method 

for implementation before the use of sophisticated 

methods. In GPP simulated annealing is used as direct 

graph partitioning tool [3, 4] also in multilevel 

partitioning it is used as partition refinement tool [5, 6]. 

 

 Principle and Model of Simulated Annealing 
Simulated annealing methodology is inspired by the 

physical process of annealing in metallurgy. In 

annealing, a solid is heated to a high temperature and 

gradually cooled down crystallization. At high 

temperatures, the atoms move randomly with high 

kinetic energy, but during the cooling process, they 

have a tendency to align themselves to the minimum 

energy state [7]. The algorithm of simulated annealing 

is based on two loops called as internal loop and 

external loop. Iterations in an internal loop continues 
still the system becomes stable. Whereas as external 

loop reduces the temperature to simulate annealing of 

stable systems. The internal loop generates new state by 

basic alterations in previous one and then applies it to 
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the Metropolis acceptance rule. The best state generated 

by the algorithm is preserved and updated successively 

by internal loop. 

In simulated annealing,point of optimized state space E’ 

is generated within a state space from the existing point 

of state space E at each step in the algorithm. Point E’ 
accepted unconditionally if it has a lower cost function 

than E. But if it has a higher cost, then it is accepted 

using the metropolis criterion described below. This 

acceptance probability is proportional to the 

temperature T of the annealing process, which is 

lowered steadily as the algorithm proceeds.  

For E‘ belonging to state space, the probability that E’ 

gets selected is given by the relation:                 

                𝑃𝑠→𝑠′ = 𝑚𝑖𝑛 1, 𝑒
− 

𝑓 𝐸 ′ −𝑓 𝐸 

𝑇
 

 (1) 

If T is high initially, then high probability of making 

uphill moves exists. It allows the search to fully explore 

the state space. Simulated Annealing will converge 

asymptotically to global optimum under two conditions 
[8]: 

Homogeneous Condition: If T is lowered to 0 in 

anyway, while the length of the homogeneous sequence 

formed by the accepted points at each temperature is 

increased to an infinite length. 

Inhomogeneous Condition: Irrespective of the length 

of these isothermal chains, the cooling schedule is 

chosen so that T approaches to 0 at a logarithmically 

slow rate. 

In practice neither of this is possible in infinite 

implementations, hence polynomial time 

approximations are used. The quality of results and the 

rate of convergence are affected by the choice of 

cooling schedule and the length of chain at each 

temperature. The SA program is ended if an acceptable 

solution is originated or if a designated final 

temperature is reached. Simulated Annealing is 

successful in a wide range of NP-hard optimization 

problems. 

 Simulated Annealing for Graph Partitioning 

Johnson et al [9] adapted simulated annealing for graph 

bipartitioning. Since simulated annealing based on the 

notion of moving from one state to the neighboring 

state, in this context two partitions are neighbors if by 

moving single vertex from one part to the other part we 

can go from one partition to the other partition. Cost 

function for the bipartition of graph 𝐺 =  𝑉,𝐸 with 

two neighboring partitions for 𝑣 ∈ 𝑉,𝑃1 = (𝑉1 ,𝑉2) and 

𝑃2 =  𝑉1 −  𝑣 ,𝑉2 ∪  𝑣   is: 

𝑓𝛼 𝑃1 = 𝑐𝑢𝑡 𝑃2 + 𝛼  𝑉1 −  𝑉2  
2                          (2) 

where𝛼 is constant. Authors have shown that this cost 

function bisects the graph, but balance constraint is 

compromised. Penalty function is the second part of 

cost function which allows escaping from local 

minimum by passing through the unauthorized state. 

For proper choice of 𝛼, penalty function forces the 

balanced partition. But the disadvantage is that it 
involves an inability of returning to an unacceptable 

state for larger graphs. Heuristic technique is used to 

improve the balance constraint. An adaptation of 

simulated annealing gives results similar to KL for 

smaller graphs  100 ≤  𝑉 ≤ 1000 ,  but execution 

time is longer. 

Simulated annealing to graph bipartitioning is extended 

to k – partitioning of weighted graphs by C. Bichot 

[10]. Cost function for the k - partitioning of graph 

𝐺 = (𝑉,𝐸) with partition 𝑃 =   𝑉1 ,𝑉2 ,… ,𝑉𝑘   is: 

𝑓𝛼 𝑃 = 𝑓 𝑃 + 𝛼 𝑚𝑎𝑥 𝑤 𝑉𝑖 𝑖∈ 1,2,…,𝑘 −

𝑚𝑖𝑛𝑖∈1, 2, …, 𝑘𝑤𝑉𝑖  (3) 

In case of k – partitioning, two partitions are neighbors 

if by moving single vertex from one part to the other 

part we can go from one partition to the other k – 1 

partitions. As a result neighborhood is very large, hence 
adaptation to k – partitioning is minimal. 

Adaptation of simulated annealing to optimization of 

GPP is relatively easy to implement with biggest 

advantage of its flexibility to the acceptance of different 

objective functions and constraints of partitioning [10]. 

But these adaptations are very slow as compared with 

other methods. SA can be used constructively for 

smaller graphs with non - traditional objective 

functions. 

B. Genetic Algorithm (GA) 

Genetic Algorithms (GAs) are robust ways which can 

be used in search and optimization issues based on 

Darvin‘s principle of natural selection. Genetic 

Algorithm is one of the best optimization algorithms 

having great potential to deal with various problem 

areas like graph partitioning, image processing, and 

routing issues. The idea behind GA is that the 

combination of exceptional characteristics from 

different ancestors generates the better and optimized 

off springs that is having an improved fitness function 

than the ancestors. Implementing this mechanism 
iteratively the off springs gets more optimized, resulting 

into higher sustainability in the environment. The 

parameter set of the optimization problem is required to 

be coded as a finite-length string or chromosome. 

Population in GA is a collection of strings or a 

chromosome [11]. Adaptation of chromosome to the 

environment is evaluated using objective function. 

Hence the objective function in GA is called as fitness 

function.  Basic GA is composed of three operators: 

Selection – Forms population by selecting parents to 

reproduce chromosome at first stage, then the 
chromosomes generated in first stage are selected to 

generate population for the next stage. 
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Crossover - This operator requires two parents to 

generate several offsprings by combination of genes. 

Mutation– This operator is created by constrained 

random modifications of one or many genes of 

chromosomes. 

Mutation is used to explore the solution space and 
crossover to reach to the local optima [12]. In GA 

population evolves iteratively, it starts with a randomly 

generate initial population; a new population is 

generated from the existing population by selection, 

crossover, and mutation. Fitness function in GPP is the 

inverse of the objective function of minimizing edge 

cut. Several GA adaptations have been proposed to 

solve graph partitioning optimization problem [13 - 15]. 

In GPP number of vertices of graph represents size of 

chromosome, crossover operators are cut vertices and 

mutation operators are vertices involved in exchanges 

between parts.  

 Principle and Model of Genetic Algorithm 

Cross breeding with alternative chromosome within the 

population occurs by giving opportunities to highly 

appropriate chromosomes. This breeding generates 

chromosome as offspring and this offspring shares 

some characteristics taken from every parent. By 

favoring the mating of the additional appropriate 

chromosome, the foremost promising areas of the 

search house are explored. Convergence to an optimal 

solution of the population of chromosomes depends on 

the structure of Genetic Algorithm. 
Genetic Algorithm starts by randomly selecting an 

initial population P of n chromosomes. At every 

iteration; a new population P’ is generated by choosing 

two parents from P with the probability of selection 

proportional to their fitness. Generate new offsprings by 

crossover from selected parents with probability Pc, and 

then by random mutation recombine these 

chromosomes with some probability Pm(0.001 ≤ 𝑃𝑚 ≤
0.01). Newly generated population replaces the existing 

population. Termination criteria can be either the 
number of generations or the best fit for chromosomes 

or even time elapsed. For specific applications, redefine 

or extend crossover and mutation operators and to 

speed up the convergence initiate a local search at the 

end of each generation. Depending on the choice of 

implementation techniques, variations in encoding of 

solution space into chromosomes, the size of 

population, mutation and crossover rate may be 

observed. Genetic algorithms are better known in a 

variety of applications. 

 Genetic Algorithm for Graph Partitioning 
Bui and Moon [12] exploits the potential of genetic 

algorithm to solve graph partitioning problem. GPP 

studied in [13] is a graph bisection problem with 

minimized cut and balanced bisection using Genetic 

Bisection Algorithm (GBA). The GBA carries a single 

mutation and crossover per iteration, which decreases 

the number of parameters in genetic algorithm by two. 

Preprocessing step of GBA modifies numbering of 

vertices in the initial graph G and new graph G ’is 

generated which is reference graph for the remaining 

algorithm. At each iteration, two parents are selected, 
then from these parents crossover operator generates 

unique offspring and at the end mutation is applied to 

offspring. Swapping depends on the quality of offspring 

generated; if the cut is comparable to its parents then 

the most related parent is replaced by offspring. 

Otherwise, least efficient chromosome of the 

population is replaced. The process continues still 80% 

of the chromosomes have same cut value. Fitness 

function used in GBA is: 

𝑓 𝑝 =   𝑐𝑢𝑡 𝑞  
𝑞∈𝑝𝑜𝑝

𝑀𝑎𝑥
− 𝑐𝑢𝑡 𝑝   

             + 
1

3
  𝑐𝑢𝑡 𝑞  −  𝑐𝑢𝑡 𝑞  

𝑞∈𝑝𝑜𝑝

𝑀𝑖𝑛

𝑞∈𝑝𝑜𝑝

𝑀𝑎𝑥

         (4) 

Partitions determined by GBA in case of ordinary 

graphs are of better quality but it is multiple times 

slower than SCOTCH. M. Cross et al. [140] proposed 

use of GA using multilevel method for k partitioning of 

the graph. They proposed Jostle Evolutionary [JE] 

adaptation of hybrid multilevel GA for optimization of 

GPP. It starts by creating 50 chromosomes randomly 

with limitation of maximum 1000 iterations. Each of 50 

chromosomes generates offsprings using crossover and 

mutation operator. The evaluation strategy replacement 
operator chooses the new population for JE after 

offspring generation. Fitness function for this algorithm 

is: 

𝑓 𝑝 =  − 𝐶𝑢𝑡  𝑗𝑜𝑠𝑡𝑙𝑒 𝑝  ∗ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑗𝑜𝑠𝑡𝑙𝑒 𝑝  , 

𝑓𝑜𝑟 𝑝
∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛                                                                 5  
Computation time of JE is several weeks for larger 

graphs.  

However, it gives the best solution for graph 

partitioning, but it is really not computationally 

efficient [15].  

C. Tabu Search 

Tabu search is a local heuristic method based on 

neighborhood initially proposed by Glover and Laguna 
[16].  It explores the solution space by constantly 

replacing recent solution with best non visited 

neighboring solution, new solution may be less 

efficient. A fundamental concept in tabu search is that 

the intelligent search must be based on learning; the 

usage of flexible memory explores beyond optimality 

and exploits the earlier state of the search to influence 

its future states [17]. Tabu lists are introduced to avoid 

cycling of recently visited solutions and optimality 

crossing. In graph partitioning tabu search algorithm 
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utilizes two neighborhood relations S1 and S2 based on 

two different move operators. These operators 

exchange vertices between subsets of partition. Tabu 

search improves the number of current best partitions. 

 Principle and Flow of Tabu Search 

Tabu search algorithm follows the search whenever a 
local optimum is encountered by permitting non-

improving moves; cycling back to earlier visited 

solutions is prevented by the exploitation of memories, 

called the tabu list which reports the recent history of 

the search. Tabus are one of the distinctive elements of 

tabu search when compared with hill climbing methods.  

Tabu search begins iteratively with local or 

neighborhood search from one solution to another still 

selected termination criteria satisfied. Each solution s 

has neighborhood 𝑁 𝑠 ∁𝑆and solution 𝑠′ ∈ 𝑁 𝑠  is 
generated from s by move. Objective function for tabu 

search is to minimize𝑓 𝑠 . Tabu search method permits 

moves which improve the current objective function 

value and ends when no improving solution can be 

established. The algorithm starts by selection of 𝑠 ∈ 𝑆, 
then find 𝑠′ ∈ 𝑁 𝑠  such that𝑓 𝑠′ < 𝑓 𝑠 . If no such 

𝑠′found then 𝑠 is the local optimum and algorithm 

stops. Otherwise designate 𝑠′to new 𝑠 and repeat the 

process. 

 Tabu Search for Graph Partitioning 

Roland E. et al. [18] introduced an adaptation of tabu 

search algorithm for graph partitioning. In this method 

all vertices having same gain are placed in partition P 

ranked as g. Then find a nonempty partition with the 

highest rank, it yields vertex with maximum gain. After 

each move, partition structure is updated by computing 

gains of selected vertex and its neighbors then transfer 

to the appropriate partition. Results yield by this 

algorithm are compared with a KL –refinement 

algorithm and simulated annealing, gives motivating 

results for 149 graphs. But unfortunately works in 
smaller graphs with 10 to 500 vertices. Multilevel 

algorithm proposed in [19] uses tabu search during 

partitioning and refinement process. In this method 

modifications are suggested in the traditional version of 

the KL/FM algorithm based on moving a vertex only 

once per round, specific type of moves (u, block) are 

expelled only for few iterations.  Number of iterations 

for which move (v, block) is excluded depends on 

function f and current iteration. Non excluded vertex 

with highest gain is always moved.  If the vertex is in 

block 𝑉1 , then the move (v,𝑉1) to the block yielding the 
highest gain is excluded for f(i) iterations means vertex 

cannot be placed back to the block  𝑉1for f(i) iterations 

[20, 21] Advanced local search k – way algorithm is 

based on tabu search, which has been applied to graph 

partitioning problem [22, 23]. 

In this algorithm, k has no influence on the performance 

in terms of computation time. However, as k increases 

it requires larger memory. Results generated in a short 

running time are far better than METIS and CHACO. 

For the prolonged running time from one minute to one 

hour, the algorithm is converged towards balancing 
which is far better than the methods having run time in 

weeks. 

D. Random Walks (RWs) 

Random walk (RWs) was originally introduced by Karl 
Pearson. A random walk is mathematical formalization 

a path which consists of random steps in succession. 

Random walk serves as a fundamental model for 

recording stochastic activities which explains the 
observed behavior of the processes. Generally random 

walks assumed as Markov Chains [24]. For different 

variations of RWs in graph partitioning problem 

concepts like local search algorithm or path 

determining strategy are also used. A random walk is an 

iterative process which can be repeated arbitrary 

number of times starts with vertex v and then randomly 

selects the next vertex to visit from the set of neighbors 

considering transition probabilities. Diffusion is and 

iterative natural process in which splittable entities 

between neighboring vertices are exchanged still all 
vertices has same quantity. Diffusion is nothing but 

special random walk and hence both can be used for 

identifying dense graph regions. This method is used in 

graph clustering but balance constraint is neglected 

[25]. 

 Principle and Flow of Random Walk 

In Random Walk, the next step is selected uniformly 

between the neighbors of the vertex. A main weakness 

of RW is the existence of loops in the path while 

travelling from the source to the destination vertex. To 

prevent loops, the simplest method is to introduce 

memory in the RWs. 
RW is based on the neighborhood search techniques. At 

each step a node𝑣 ′ ∈ 𝑁 𝑣  is generated from the 

existing node v. If the cost function 𝑓 𝑣 ′ for 𝑣 ′is less 

than𝑓 𝑣 , then the node 𝑣 ′𝑖𝑠accepted and the search 

proceeds by setting v = v’. But if 𝑓 𝑣 ′  is greater 

than𝑓 𝑣 , then the point 𝑣 ′ is accepted with probability 
of accepting ascending moves.  The complete family of 

random walk can be generated by varying parameter 

P(0 ≤ 𝑃 ≤ 1), from greedy search to purely random 

search.Greedy search will result in the search 

converging to local minimum and hence a small 

nonzero uphill probability will help in escaping such 

minima. But, if the uphill probability is too high, the 

search becomes more random and the performance may 
drop. 
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 Random Walk for Graph Partitioning:    

Meyerhenke [26] proposed similarity measure based on 

diffusion resembles to the spectral partitioning can be 

employed within Bubble framework, with the 

advantages in partitioning quality. Balancing is 

enforces by combining with the actual partitioning 
process in two different ways. First one is iterative in 

which diffusion load in each block is multiplied by an 

appropriate scalar. If an appropriate scalar cannot be 

determined, then the second way is adopted, in which 

migrating flow is computed on the quotient graph of 

partition. To balance the partition, flow value fij 

between blocks i and j indicates number of nodes to be 

migrated. For the best solution to migration of nodes 

diffusive similarity values calculated within the Bubble 

framework are used [27, 28]. Pellegrini combined 

KL/FM with diffusion to speed up previous approaches 

of bipartitioning in tool Scotch. These results are 
extended for k – way partitioning with added variations 

within the tools DibaP and PDibaP. In collaboration 

with multilevel method diffusive partition generates 

high quality solutions, particularly in terms of 

communication volume and block shape. However, 

faster implementation of diffusion with running time 

independent of k is still undetermined. 

E. Fusion - Fission 

The Fusion – Fission method is originated from the 
nuclear process. The Nuclear process generates atoms 

with great internal cohesion which is same as matter 
reforming in an optimization process. In the nature, iron 

is an atom with the greatest cohesion, with 56 nucleons 

ranging from 2 to 235 for the other atom. If the number 

of nucleons and sort of nucleons permits, then 

reorganization of nucleons of atoms generates iron 

atom. Graph partitioning problem correlates with 

nuclear process, in which objective is to find a low 

energy organization of parts of the graph. The vertices 

of the graph are nucleons and parts are atoms. In Fusion 

– Fission process, parts of the partition are successively 

split or merged. 

 Principle and Model of Fusion - Fission 

The nucleons are ejected during Fusion or Fission 

process in nature. If these nucleons have high energy 

then they perform fissions by joining other atoms. This 

method is divided into two parts, Initialization and 

Optimization. Initialization process creates a valid 

initial solution, whereas optimization is combinatorial 

local search. Mechanism of constraint relaxation is 

involved in this method, to get rid of energy sinks. 

Fusion – Fission is an iterative process which generates 

parts at each step. 

Multilevel algorithm is used as the local search method 
in Fusion – Fission algorithm. It starts with an initial 

partition Pk of the graph G into k parts. Divide each part 

Pk into k1smaller parts using multilevel algorithm, it 

relaxes the constraint of number of parts. Partition 

𝑃𝑘𝑘1
will have 𝑘 × 𝑘1 parts. Each part of the partition 

𝑃𝑘𝑘1
will be vertex of new graph G’ generated from G.  

Subsequently, partition graph G’ into k2 parts using 

multilevel algorithm. If k = k1, search will be intensified 

and if k = k2 or any other number then search will be 

diversified. Project the new partition P’ of G’ onto G. 

Hence, new partition 𝑃𝑘2
 of graph G is generated. 

Refinement of 𝑃𝑘2
 is the last step of iteration. For 

refinement use Walshaw – Cross refinement algorithm. 

This algorithm uses load distribution method to balance 
the partition.  

 Fusion Fission for Graph Partitioning 

Fusion Fission is a recent method proposed by Bichot 

C. E. [29, 30] for optimization of graph partitioning 

problem, which was originally designed to solve 

partitioning of European airspace. This method is 

divided into two parts, an initialization part and loop on 

the number of parts. Initialization is a two step process; 

in first step a sequence of numbers is created which 

indicates the number of parts to be created at each 

iteration of loop on number of parts.In the next step of 

initialization, initial partition of k – parts is created by 
partitioner.  Loop on the number of parts is n times 

loop. First step determines required number of parts for 

newly created partition. Fission step divides each part 

of the current partition P in several parts and then in the 

Fusion step temporary graph G’ is created in which 

each vertex represents one of the parts of P. Next step 

aims to create a new partition kifrom the graph G’, this 

partition is projected onto the initial graph G. Last step 

is the refinement of G using Global Kernighan Lin 

Refinement (GKLR) algorithm. Fusion Fission method 

increases the efficiency in comparison with the 
multilevel method, but its computation time is very 

long. 

III. Swarm Intelligence 

 

A swarm is huge number of uniform, simple agents 

inter acting locally among themselves, and their 

environment to permit global interesting behavior to 

appear without central control. Swarm-based 

algorithms are competent to generate low cost, fast, 

and robust solutions to several complex problems.  

These algorithms are known asnature–inspired 

orpopulation-basedalgorithms. [31, 32]. Swarm 
Intelligence (SI) can consequently be known as 

comparatively new branch of Artificial Intelligence 

which is used to model the collective behavior of 

social swarms in nature such as ant colonies, bird 

flocks, and honey bees. Even though these insects or 

swarm individuals are fairly simple with limited cap 
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abilities on their own, they interact jointly with certain 

behavior al patterns for achieving task sessential for 

their survival. Swarm individuals or agents interact 

directly or indirectly.  Waggle dance of honey bees 

[33] is an  example of direct inter action through visual 

or audio contact. In direct inter action occurs when 
one individual changes the environment and the others 

respond to the new environment. In direct inter action 

is refer redasstigmergy, which basically means 

communication through the environment. Pheromone 

trail so fants which they depositon their way while 

searching for food sources is an example of indirect 

inter action . Thearea of research presented in this 

depth paper focuses on Swarm Intelligence. In next 

section, two of the most popular model so f swarm 

intelligence inspired by birds flocking behavior and 

ant‘sstigmergic behavior are analyzed in detail. 

 

A. Ant Colony Optimization (ACO) 

Ant Colony Optimization is inspired by the for aging 

behavior fants. At the core of this behavior is the 

indirect communication between the ants with the help 

of chemical pheromone trails, which enables them to 

find short paths between the irnest and food sources. 

Blum [34] exploited this characteristic of real ant 

colonies in ACO algorithms to solve global 

optimization problems.  Ant based solution 

construction, pheromone update and daemon actions 

are the algorithmic components involved in 
metaheuristic of ACO. Dorigo [35] developed the 

firstant colony optimization algorithm and since then 

numerous improvements of the ant system have been 

proposed. Ant colony optimization algorithm (ACO) 

has strong robustness as well as good dispersed 

calculative mechanism. ACO can be combined easily 

with other methods; it shows well performance in 

resolving the complex optimization problem. The 

Travelling Salesman Problem is selected as example to 

introduce the basic principle of ACO, and now several 

improvement algorithms are developed for the problem 

of ACO.  This stochastic optimization method has been 
successfully applied in a number of engineering as well 

as real world problems. ACO algorithm imitates single 

ant colony which constructs solution in the form of 

parameters associated with problem.   

 Principle and Model of ACO 

Ant Colony Optimization (ACO) is a computational 

method which iteratively optimizes a problem to 

pheromone with regard to a given transition probability. 

ACO optimizes a problem by having a updated 

pheromone trails and moving these ants around in the 

search-space according to simple mathematical 
formulae over the transition probability and total 

pheromone in the region.  

At each iteration; of ACO generate global ants and 

calculate their fitness. Update pheromone and edge of 

weak regions. If fitness is improved then move local 

ants to better regions, otherwise select new random 

search direction.  

Update ant pheromone and evaporate ant pheromone. 
The continuous ACO is based on both local and global 

search. Local ants have capability to move towards 

latent region with best solution with respect to 

transition probability of region k, 

𝑃𝑘 𝑡 =
𝑡𝑘 𝑡 

 𝑡𝑗  𝑡 
𝑛
𝑗=1

                                                        (6) 

where𝑡𝑘 𝑡  is total pheromone at region k and n is 

number of global ants. 

Pheromone is updated using following equation  

𝑡𝑖 𝑡 + 1 =  1 − 𝑟 𝑡𝑖 𝑡                                                (7) 

where r is pheromone evaporation rate. 

Probability of selection of region for local ants is 

proportional to pheromone trail. 

 ACO for Graph Partitioning 

ACO algorithm uses pheromone trails of ants to 

construct solution in the form parameters associated 
with graph parts. Most of the ACO based graph 

partitioning algorithms deals with the situations where 

several ant colonies fight with each other in which each 

colony represents parts in the partition. P. Koroceset al. 

[36] initiated multi - ant colonies algorithm for graph 

partitioning. In this algorithm grids representing world 

of ants are covered by them, each grid is associated 

with vertex of graph. Robicet et. al. [37] combined this 

approach with multilevel method. These methods 

provide very good partitions but computational time is 

extremely longer than multilevel method. On contrary 
F. Comellas [38] proposed single colony ACO 

algorithm without multilevel composition, which is 

very efficient for partitioning smaller graphs. 

B. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart [39], developed swarm 

intelligence model inspired by birds flocking behavior 

called as Particle Swarm Optimization (PSO) 

algorithm. The PSO has particles determined from 

natural swarms by combining self-experiences with 

social experiences using communications based on 

iterative computations. In PSO algorithm, a candidate 
solution is presented as a particle. To search out to a 

global optimum, it uses a collection of flying particles 

(changing solutions) in a search area (current and 

possible solutions) as well as the movement towards a 

promising area.PSO is a metaheuristic since it makes 



International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019 

 

ISSN: 2231-2803                                   http://www.ijcttjournal.org                                    Page 57 

hardly any assumptions about optimization of the 

problem and hence it can search incredibly large spaces 

of candidate solutions. More specifically, PSO does not 

use the gradient of the problem being optimized. 

Resemble to classic optimization methods such as 

gradient descent and quasi-Newton methods; PSO does 
not require that the optimization problem should be 

differentiable.PSO can therefore also be used in 

optimization problems which are partially irregular, 

noisy, change over time, etc.   

 Principle and Model of PSO 

Particle Swarm Optimization (PSO) is a computational 

method which iteratively optimizes a problem to 

improve a candidate solution with regard to a given 

measure of quality. PSO optimizes a problem by having 

a population of candidate solutions and moving these 

particles around in the search-space according to simple 

mathematical formulae over the particle's position and 
velocity. Each particle's movement is influenced by its 

local best known position and is also guided toward the 

best known positions in the search-space, which are 

updated as better positions are found by other particles. 

This is expected to move the swarm toward the best 

solutions. 

Consider a scenario that a group of birds is randomly 

searching food in an area. There is only one piece of 

food in the area being searched. All the birds don‘t 

know exact location of food but after each iteration they 

know the distance from food. Hence the best strategy to 
reach to the food is following the bird which is nearest 

to the food. PSO learns from this situation and uses it to 

solve the optimization problems.  In PSO, each single 

solution is a ‗bird‘ in the search space called as 

‗particle‘. All the particles have fitness values which 

are evaluated using fitness function to be optimized and 

have velocities that direct the flying of the particles. 

The particles (solutions) fly through the problem space 

by following the recent optimum particles. PSO is 

initialized with a group of random particles and then 

searches for optima by updating generations. In each 
iteration, every particle is updated by following two 

"best" values. The first value is the best solution 

(fitness) which it has achieved so far. This value is 

called pbest. Another "best" value that is tracked by the 

particle swarm optimizer is the best value, obtained so 

far by any particle in the population. This best value is a 

global best and called gbest. After finding the two best 

values, the particle updates its velocity and positions 

with following equations, 

𝑉𝑖𝑑  𝑡 + 1 = 𝑉𝑖𝑑  𝑡 + 𝑐1𝑅1 𝑝𝑖𝑑 𝑡 − 𝑥𝑖𝑑  𝑡  +

                           𝑐2𝑅2  𝑝𝑔𝑑  𝑡 − 𝑥𝑖𝑑  𝑡                     (8) 

𝑥𝑖𝑑  𝑡 + 1 = 𝑥𝑖𝑑  𝑡 + 𝑣𝑖𝑑  𝑡 + 1                                (9) 

where: 

𝑉𝑖𝑑  – Rate of position change of ith particle in 

dthdimension and t denotes iteration count 

𝑥𝑖𝑑  - Position of ith particle 

𝑝𝑖𝑑  – Historically best position of particle 

𝑝𝑔𝑑 - Position of swarm‘s global best particle 

𝑅1and𝑅2are two n – dimensional vectors with random 

numbers uniformly selected between [0, 1]. 

𝑐1 and𝑐2 are position constant weighting parameters 

called as cognitive and social parameters respectively. 

Memory update is done by updating𝑝𝑖𝑑  and 𝑝𝑔𝑑  when 

following condition is met. 

𝑝𝑖𝑑=  𝑝𝑖  if  𝑓 𝑝𝑖 > 𝑓(𝑝𝑖𝑑 ) 

𝑝𝑔𝑑 = 𝑔𝑖if𝑓 𝑔𝑖 > 𝑓(𝑝𝑔𝑑 ) 

where,𝑓(𝑥) is the objective function subject to 

maximization. 

Once terminated, the algorithm reports the values of 

𝑝𝑔𝑑  and𝑓(𝑝𝑔𝑑 )  as its solution. 

The most commonly used stopping criteria for 

iterations are:   

1. After a fixed number of iterations (or a fixed 
amount of CPU time)  

2. After some number of iterations without an 

improvement in the objective function value (the 

criterion used in most implementations) 

3. When the objective reaches a pre-specified 

threshold value and thus ultimately the solution is 

obtained. 

 PSO for Graph Partitioning 

A limited work is being reported in literature addressing 

GPP using particle swarm optimization technique. R. 

Green et al. [40] combined PSO with Breadth First 
Search (BFS) for partitioning large graphs. This 

approach is based on communication between the 

partitions and within the partition. Objective function is 

to minimize inter partition communication and 

maximize intra partition communication.  This 

approach is limited to canonical graphs shows 

improved partitions with less computation time. Kapade 

et al. [41] have proposed a robust image segmentation 

technique, which combines discrete PSO and multilevel 

graph partitioning algorithm to minimize undesirable 

over-segmentation. Greedy graph growing partition is 

used, which is based on employing the region 
adjacency graph to improve the quality of 

segmentation. The performance of the proposed 

technique is evaluated through quantitative and 

qualitative validation experiments on benchmark 

images. 

IV. Conclusion 

This paper explains various optimization techniques 

such as Simulated Annealing, Genetic Algorithm, Tabu 

Search, Random Walk, Fusion Fission, Ant Colony 

Optimization and Particle Swarm Optimization along 

with their adaptation in graph partitioning. Simulated 



International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019 

 

ISSN: 2231-2803                                   http://www.ijcttjournal.org                                    Page 58 

Annealing is a general solution method where the 

quality of result is reasonably good but due to large 

neighborhoods not acceptable in k - partitioning. The 

solution time is too long for larger graphs. 

Genetic Algorithm (GA) belongs to a group of 

evolutionary algorithm which is global search heuristic 
technique inspired by evolutionary biology. 

Optimization problems based on modifications cannot 

be solved using GA due to poorly known fitness 

function which generate bad chromosome blocks cross 

over.  

The tabu search is a metaheuristic technique in which 

the selection of tabu moves generating the 

neighborhood of a point under search is more problem 

specific. Finding too many parameters can result into 

large number of iterations and hence will not be 

suitable for a large and complex graphs. Random Walk 

does not use memory while working with a search 
space and hence does not store any information about 

previously visited locations of the search space. Faster 

implementation of diffusion with running time 

independent of k is still undetermined in RW. Fusion 

Fission is a local search algorithm where iterative 

improvements may take exponential time in partitioning 

larger graphs.  

Ant Colony Optimization is bio inspired metaheuristic 

motivated by foraging behavior of ants.ACO produces 

very good partitioning results when combined with 

other techniques, but the solution time is too long which 
ranges to hours even on the fastest computer. Particle 

Swarm Optimization (PSO) shares several common 

features with Genetic Algorithm. Both algorithms start 

with a class of randomly generated population, both 

have fitness values to evaluate the population, both 

update population and search for the optimum solution 

with random techniques. However, PSO does not have 

genetic operators like crossover and mutation. Particles 

update themselves with the internal velocity and also do 

have a memory, which is important in algorithm. PSO 

need to be coupled with other heuristic method to 

enhance the performance and hence is very less used in 
graph partitioning problems. 

From the study, it is observed that particle swarm 

optimization (PSO) seems to be comparatively better 

optimization technique compared to others due to its 

simple but efficient nature. It tries to optimize a 

problem by an iterative method to improve a candidate 

solution, with regard to given quality of measure. The 

PSO particles move around the search space using 

mathematical formulae over the particle position and 

velocity, movement of each particle is influenced by its 

own local best position and at the same time also 
guided towards the best known position established by 

other particle in the search space. This methodology 

over the iterations is expected to move the swarm 

towards the best solution. 
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