
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 51

Graph Partitioning Using Metaheuristic

Techniques
Naresh Ghorpade

1
, H. R. Bhapkar

2

1Research Scholar, 2Assistant Professor

Department of Mathematics, MIT School of Engineering, MITADT University, LoniKalbhor, Pune –

412201, Maharashtra, India

Abstract

The graph partitioning problem aims to partition the

vertices of graph into a certain number of blocks in

such a way that the edge cut is minimized and balance

constraint that all blocks must be of the same weight
should also be maintained. This paper is dedicated to

the application of metaheuristics to the optimization of

graph partitioning problem. Numerous adaptations of

metaheuristics for partitioning of graphs have been

proposed in last twenty years. In this paper State – of –

the art methods which focuses on local as well as

population-based metaheuristics are analyzed in depth.

Keywords: Graph partitioning, Optimization technique,

Swarm Intelligence

I. Introduction

Most of the real-life problems have several solutions

and occasionally an infinite number of solutions may be

possible. If the problem at hand admits more than one

solution, optimization can be achieved by finding the

best solution of the problem in terms of some

performance criterion. The graph partitioning problem

(GPP) deals with the partition of vertices in a certain

number of blocks in such a way that the edge cut is

minimized. While partitioning graph, a balance

constraint that all blocks must be of the same weight
should also be maintained. Thus, optimization

techniques are considered necessary for best partition

with optimized cut value. This paper focuses on local

search optimization techniques like Simulated

Annealing, Genetic Algorithm, Tabu Search, Random

Walk, Neighborhood Search, Swarm intelligence-based

Ant Colony Optimization, and Particle Swarm

Optimization. These optimization techniques are

characterized by the use of local search method,

recursively applied to the solution of the problem.

II. Optimization Techniques

Multi-objective optimization (MOO) or vector

optimization is the process of optimizing systematically

and simultaneously a collection of objective functions

[1].

Graph partitioning is a NP-hard problem with multiple

conflicting objectives such as the inter-partition

relationship should be minimized while maximizing the

intra-partition relationship as well as balance constraint

that all blocks must be of the same weight should also

be maintained. Hence graph partitioning is a multi-

objective optimization problem. The optimization
techniques used in graph partitioning are described

below:

A. Simulated Annealing

Simulated Annealing (SA) is a standard probabilistic
metaheuristic for the global optimization problem of a

given function in a large search space for locating a

good approximation to the global optimum. It is

frequently used when the search space is discrete. The

main advantage of SA is its capability of moving to

states of higher energies. Simulated Annealing can be

effectively used in graph partitioning to find a balanced
partition which can minimize edge cut. Kirkpatrick et

al. [2] introduced simulated annealing to solve

combinatorial optimization problem. Simulated

annealing is tried and tested technique, which can be

simply located in space, easy to locate in place and

which often generates motivating results in short

programming time. Hence it is an interesting method

for implementation before the use of sophisticated

methods. In GPP simulated annealing is used as direct

graph partitioning tool [3, 4] also in multilevel

partitioning it is used as partition refinement tool [5, 6].

 Principle and Model of Simulated Annealing
Simulated annealing methodology is inspired by the

physical process of annealing in metallurgy. In

annealing, a solid is heated to a high temperature and

gradually cooled down crystallization. At high

temperatures, the atoms move randomly with high

kinetic energy, but during the cooling process, they

have a tendency to align themselves to the minimum

energy state [7]. The algorithm of simulated annealing

is based on two loops called as internal loop and

external loop. Iterations in an internal loop continues
still the system becomes stable. Whereas as external

loop reduces the temperature to simulate annealing of

stable systems. The internal loop generates new state by

basic alterations in previous one and then applies it to

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 52

the Metropolis acceptance rule. The best state generated

by the algorithm is preserved and updated successively

by internal loop.

In simulated annealing,point of optimized state space E’

is generated within a state space from the existing point

of state space E at each step in the algorithm. Point E’
accepted unconditionally if it has a lower cost function

than E. But if it has a higher cost, then it is accepted

using the metropolis criterion described below. This

acceptance probability is proportional to the

temperature T of the annealing process, which is

lowered steadily as the algorithm proceeds.

For E‘ belonging to state space, the probability that E’

gets selected is given by the relation:

 𝑃𝑠→𝑠′ = 𝑚𝑖𝑛 1, 𝑒
−

𝑓 𝐸 ′ −𝑓 𝐸

𝑇

 (1)

If T is high initially, then high probability of making

uphill moves exists. It allows the search to fully explore

the state space. Simulated Annealing will converge

asymptotically to global optimum under two conditions
[8]:

Homogeneous Condition: If T is lowered to 0 in

anyway, while the length of the homogeneous sequence

formed by the accepted points at each temperature is

increased to an infinite length.

Inhomogeneous Condition: Irrespective of the length

of these isothermal chains, the cooling schedule is

chosen so that T approaches to 0 at a logarithmically

slow rate.

In practice neither of this is possible in infinite

implementations, hence polynomial time

approximations are used. The quality of results and the

rate of convergence are affected by the choice of

cooling schedule and the length of chain at each

temperature. The SA program is ended if an acceptable

solution is originated or if a designated final

temperature is reached. Simulated Annealing is

successful in a wide range of NP-hard optimization

problems.

 Simulated Annealing for Graph Partitioning

Johnson et al [9] adapted simulated annealing for graph

bipartitioning. Since simulated annealing based on the

notion of moving from one state to the neighboring

state, in this context two partitions are neighbors if by

moving single vertex from one part to the other part we

can go from one partition to the other partition. Cost

function for the bipartition of graph 𝐺 = 𝑉,𝐸 with

two neighboring partitions for 𝑣 ∈ 𝑉,𝑃1 = (𝑉1 ,𝑉2) and

𝑃2 = 𝑉1 − 𝑣 ,𝑉2 ∪ 𝑣 is:

𝑓𝛼 𝑃1 = 𝑐𝑢𝑡 𝑃2 + 𝛼 𝑉1 − 𝑉2
2 (2)

where𝛼 is constant. Authors have shown that this cost

function bisects the graph, but balance constraint is

compromised. Penalty function is the second part of

cost function which allows escaping from local

minimum by passing through the unauthorized state.

For proper choice of 𝛼, penalty function forces the

balanced partition. But the disadvantage is that it
involves an inability of returning to an unacceptable

state for larger graphs. Heuristic technique is used to

improve the balance constraint. An adaptation of

simulated annealing gives results similar to KL for

smaller graphs 100 ≤ 𝑉 ≤ 1000 , but execution

time is longer.

Simulated annealing to graph bipartitioning is extended

to k – partitioning of weighted graphs by C. Bichot

[10]. Cost function for the k - partitioning of graph

𝐺 = (𝑉,𝐸) with partition 𝑃 = 𝑉1 ,𝑉2 ,… ,𝑉𝑘 is:

𝑓𝛼 𝑃 = 𝑓 𝑃 + 𝛼 𝑚𝑎𝑥 𝑤 𝑉𝑖 𝑖∈ 1,2,…,𝑘 −

𝑚𝑖𝑛𝑖∈1, 2, …, 𝑘𝑤𝑉𝑖 (3)

In case of k – partitioning, two partitions are neighbors

if by moving single vertex from one part to the other

part we can go from one partition to the other k – 1

partitions. As a result neighborhood is very large, hence
adaptation to k – partitioning is minimal.

Adaptation of simulated annealing to optimization of

GPP is relatively easy to implement with biggest

advantage of its flexibility to the acceptance of different

objective functions and constraints of partitioning [10].

But these adaptations are very slow as compared with

other methods. SA can be used constructively for

smaller graphs with non - traditional objective

functions.

B. Genetic Algorithm (GA)

Genetic Algorithms (GAs) are robust ways which can

be used in search and optimization issues based on

Darvin‘s principle of natural selection. Genetic

Algorithm is one of the best optimization algorithms

having great potential to deal with various problem

areas like graph partitioning, image processing, and

routing issues. The idea behind GA is that the

combination of exceptional characteristics from

different ancestors generates the better and optimized

off springs that is having an improved fitness function

than the ancestors. Implementing this mechanism
iteratively the off springs gets more optimized, resulting

into higher sustainability in the environment. The

parameter set of the optimization problem is required to

be coded as a finite-length string or chromosome.

Population in GA is a collection of strings or a

chromosome [11]. Adaptation of chromosome to the

environment is evaluated using objective function.

Hence the objective function in GA is called as fitness

function. Basic GA is composed of three operators:

Selection – Forms population by selecting parents to

reproduce chromosome at first stage, then the
chromosomes generated in first stage are selected to

generate population for the next stage.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 53

Crossover - This operator requires two parents to

generate several offsprings by combination of genes.

Mutation– This operator is created by constrained

random modifications of one or many genes of

chromosomes.

Mutation is used to explore the solution space and
crossover to reach to the local optima [12]. In GA

population evolves iteratively, it starts with a randomly

generate initial population; a new population is

generated from the existing population by selection,

crossover, and mutation. Fitness function in GPP is the

inverse of the objective function of minimizing edge

cut. Several GA adaptations have been proposed to

solve graph partitioning optimization problem [13 - 15].

In GPP number of vertices of graph represents size of

chromosome, crossover operators are cut vertices and

mutation operators are vertices involved in exchanges

between parts.

 Principle and Model of Genetic Algorithm

Cross breeding with alternative chromosome within the

population occurs by giving opportunities to highly

appropriate chromosomes. This breeding generates

chromosome as offspring and this offspring shares

some characteristics taken from every parent. By

favoring the mating of the additional appropriate

chromosome, the foremost promising areas of the

search house are explored. Convergence to an optimal

solution of the population of chromosomes depends on

the structure of Genetic Algorithm.
Genetic Algorithm starts by randomly selecting an

initial population P of n chromosomes. At every

iteration; a new population P’ is generated by choosing

two parents from P with the probability of selection

proportional to their fitness. Generate new offsprings by

crossover from selected parents with probability Pc, and

then by random mutation recombine these

chromosomes with some probability Pm(0.001 ≤ 𝑃𝑚 ≤
0.01). Newly generated population replaces the existing

population. Termination criteria can be either the
number of generations or the best fit for chromosomes

or even time elapsed. For specific applications, redefine

or extend crossover and mutation operators and to

speed up the convergence initiate a local search at the

end of each generation. Depending on the choice of

implementation techniques, variations in encoding of

solution space into chromosomes, the size of

population, mutation and crossover rate may be

observed. Genetic algorithms are better known in a

variety of applications.

 Genetic Algorithm for Graph Partitioning
Bui and Moon [12] exploits the potential of genetic

algorithm to solve graph partitioning problem. GPP

studied in [13] is a graph bisection problem with

minimized cut and balanced bisection using Genetic

Bisection Algorithm (GBA). The GBA carries a single

mutation and crossover per iteration, which decreases

the number of parameters in genetic algorithm by two.

Preprocessing step of GBA modifies numbering of

vertices in the initial graph G and new graph G ’is

generated which is reference graph for the remaining

algorithm. At each iteration, two parents are selected,
then from these parents crossover operator generates

unique offspring and at the end mutation is applied to

offspring. Swapping depends on the quality of offspring

generated; if the cut is comparable to its parents then

the most related parent is replaced by offspring.

Otherwise, least efficient chromosome of the

population is replaced. The process continues still 80%

of the chromosomes have same cut value. Fitness

function used in GBA is:

𝑓 𝑝 = 𝑐𝑢𝑡 𝑞
𝑞∈𝑝𝑜𝑝

𝑀𝑎𝑥
− 𝑐𝑢𝑡 𝑝

 +
1

3
 𝑐𝑢𝑡 𝑞 − 𝑐𝑢𝑡 𝑞

𝑞∈𝑝𝑜𝑝

𝑀𝑖𝑛

𝑞∈𝑝𝑜𝑝

𝑀𝑎𝑥

 (4)

Partitions determined by GBA in case of ordinary

graphs are of better quality but it is multiple times

slower than SCOTCH. M. Cross et al. [140] proposed

use of GA using multilevel method for k partitioning of

the graph. They proposed Jostle Evolutionary [JE]

adaptation of hybrid multilevel GA for optimization of

GPP. It starts by creating 50 chromosomes randomly

with limitation of maximum 1000 iterations. Each of 50

chromosomes generates offsprings using crossover and

mutation operator. The evaluation strategy replacement
operator chooses the new population for JE after

offspring generation. Fitness function for this algorithm

is:

𝑓 𝑝 = − 𝐶𝑢𝑡 𝑗𝑜𝑠𝑡𝑙𝑒 𝑝 ∗ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑗𝑜𝑠𝑡𝑙𝑒 𝑝 ,

𝑓𝑜𝑟 𝑝
∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 5
Computation time of JE is several weeks for larger

graphs.

However, it gives the best solution for graph

partitioning, but it is really not computationally

efficient [15].

C. Tabu Search

Tabu search is a local heuristic method based on

neighborhood initially proposed by Glover and Laguna
[16]. It explores the solution space by constantly

replacing recent solution with best non visited

neighboring solution, new solution may be less

efficient. A fundamental concept in tabu search is that

the intelligent search must be based on learning; the

usage of flexible memory explores beyond optimality

and exploits the earlier state of the search to influence

its future states [17]. Tabu lists are introduced to avoid

cycling of recently visited solutions and optimality

crossing. In graph partitioning tabu search algorithm

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 54

utilizes two neighborhood relations S1 and S2 based on

two different move operators. These operators

exchange vertices between subsets of partition. Tabu

search improves the number of current best partitions.

 Principle and Flow of Tabu Search

Tabu search algorithm follows the search whenever a
local optimum is encountered by permitting non-

improving moves; cycling back to earlier visited

solutions is prevented by the exploitation of memories,

called the tabu list which reports the recent history of

the search. Tabus are one of the distinctive elements of

tabu search when compared with hill climbing methods.

Tabu search begins iteratively with local or

neighborhood search from one solution to another still

selected termination criteria satisfied. Each solution s

has neighborhood 𝑁 𝑠 ∁𝑆and solution 𝑠′ ∈ 𝑁 𝑠 is
generated from s by move. Objective function for tabu

search is to minimize𝑓 𝑠 . Tabu search method permits

moves which improve the current objective function

value and ends when no improving solution can be

established. The algorithm starts by selection of 𝑠 ∈ 𝑆,
then find 𝑠′ ∈ 𝑁 𝑠 such that𝑓 𝑠′ < 𝑓 𝑠 . If no such

𝑠′found then 𝑠 is the local optimum and algorithm

stops. Otherwise designate 𝑠′to new 𝑠 and repeat the

process.

 Tabu Search for Graph Partitioning

Roland E. et al. [18] introduced an adaptation of tabu

search algorithm for graph partitioning. In this method

all vertices having same gain are placed in partition P

ranked as g. Then find a nonempty partition with the

highest rank, it yields vertex with maximum gain. After

each move, partition structure is updated by computing

gains of selected vertex and its neighbors then transfer

to the appropriate partition. Results yield by this

algorithm are compared with a KL –refinement

algorithm and simulated annealing, gives motivating

results for 149 graphs. But unfortunately works in
smaller graphs with 10 to 500 vertices. Multilevel

algorithm proposed in [19] uses tabu search during

partitioning and refinement process. In this method

modifications are suggested in the traditional version of

the KL/FM algorithm based on moving a vertex only

once per round, specific type of moves (u, block) are

expelled only for few iterations. Number of iterations

for which move (v, block) is excluded depends on

function f and current iteration. Non excluded vertex

with highest gain is always moved. If the vertex is in

block 𝑉1 , then the move (v,𝑉1) to the block yielding the
highest gain is excluded for f(i) iterations means vertex

cannot be placed back to the block 𝑉1for f(i) iterations

[20, 21] Advanced local search k – way algorithm is

based on tabu search, which has been applied to graph

partitioning problem [22, 23].

In this algorithm, k has no influence on the performance

in terms of computation time. However, as k increases

it requires larger memory. Results generated in a short

running time are far better than METIS and CHACO.

For the prolonged running time from one minute to one

hour, the algorithm is converged towards balancing
which is far better than the methods having run time in

weeks.

D. Random Walks (RWs)

Random walk (RWs) was originally introduced by Karl
Pearson. A random walk is mathematical formalization

a path which consists of random steps in succession.

Random walk serves as a fundamental model for

recording stochastic activities which explains the
observed behavior of the processes. Generally random

walks assumed as Markov Chains [24]. For different

variations of RWs in graph partitioning problem

concepts like local search algorithm or path

determining strategy are also used. A random walk is an

iterative process which can be repeated arbitrary

number of times starts with vertex v and then randomly

selects the next vertex to visit from the set of neighbors

considering transition probabilities. Diffusion is and

iterative natural process in which splittable entities

between neighboring vertices are exchanged still all
vertices has same quantity. Diffusion is nothing but

special random walk and hence both can be used for

identifying dense graph regions. This method is used in

graph clustering but balance constraint is neglected

[25].

 Principle and Flow of Random Walk

In Random Walk, the next step is selected uniformly

between the neighbors of the vertex. A main weakness

of RW is the existence of loops in the path while

travelling from the source to the destination vertex. To

prevent loops, the simplest method is to introduce

memory in the RWs.
RW is based on the neighborhood search techniques. At

each step a node𝑣 ′ ∈ 𝑁 𝑣 is generated from the

existing node v. If the cost function 𝑓 𝑣 ′ for 𝑣 ′is less

than𝑓 𝑣 , then the node 𝑣 ′𝑖𝑠accepted and the search

proceeds by setting v = v’. But if 𝑓 𝑣 ′ is greater

than𝑓 𝑣 , then the point 𝑣 ′ is accepted with probability
of accepting ascending moves. The complete family of

random walk can be generated by varying parameter

P(0 ≤ 𝑃 ≤ 1), from greedy search to purely random

search.Greedy search will result in the search

converging to local minimum and hence a small

nonzero uphill probability will help in escaping such

minima. But, if the uphill probability is too high, the

search becomes more random and the performance may
drop.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 55

 Random Walk for Graph Partitioning:

Meyerhenke [26] proposed similarity measure based on

diffusion resembles to the spectral partitioning can be

employed within Bubble framework, with the

advantages in partitioning quality. Balancing is

enforces by combining with the actual partitioning
process in two different ways. First one is iterative in

which diffusion load in each block is multiplied by an

appropriate scalar. If an appropriate scalar cannot be

determined, then the second way is adopted, in which

migrating flow is computed on the quotient graph of

partition. To balance the partition, flow value fij

between blocks i and j indicates number of nodes to be

migrated. For the best solution to migration of nodes

diffusive similarity values calculated within the Bubble

framework are used [27, 28]. Pellegrini combined

KL/FM with diffusion to speed up previous approaches

of bipartitioning in tool Scotch. These results are
extended for k – way partitioning with added variations

within the tools DibaP and PDibaP. In collaboration

with multilevel method diffusive partition generates

high quality solutions, particularly in terms of

communication volume and block shape. However,

faster implementation of diffusion with running time

independent of k is still undetermined.

E. Fusion - Fission

The Fusion – Fission method is originated from the
nuclear process. The Nuclear process generates atoms

with great internal cohesion which is same as matter
reforming in an optimization process. In the nature, iron

is an atom with the greatest cohesion, with 56 nucleons

ranging from 2 to 235 for the other atom. If the number

of nucleons and sort of nucleons permits, then

reorganization of nucleons of atoms generates iron

atom. Graph partitioning problem correlates with

nuclear process, in which objective is to find a low

energy organization of parts of the graph. The vertices

of the graph are nucleons and parts are atoms. In Fusion

– Fission process, parts of the partition are successively

split or merged.

 Principle and Model of Fusion - Fission

The nucleons are ejected during Fusion or Fission

process in nature. If these nucleons have high energy

then they perform fissions by joining other atoms. This

method is divided into two parts, Initialization and

Optimization. Initialization process creates a valid

initial solution, whereas optimization is combinatorial

local search. Mechanism of constraint relaxation is

involved in this method, to get rid of energy sinks.

Fusion – Fission is an iterative process which generates

parts at each step.

Multilevel algorithm is used as the local search method
in Fusion – Fission algorithm. It starts with an initial

partition Pk of the graph G into k parts. Divide each part

Pk into k1smaller parts using multilevel algorithm, it

relaxes the constraint of number of parts. Partition

𝑃𝑘𝑘1
will have 𝑘 × 𝑘1 parts. Each part of the partition

𝑃𝑘𝑘1
will be vertex of new graph G’ generated from G.

Subsequently, partition graph G’ into k2 parts using

multilevel algorithm. If k = k1, search will be intensified

and if k = k2 or any other number then search will be

diversified. Project the new partition P’ of G’ onto G.

Hence, new partition 𝑃𝑘2
 of graph G is generated.

Refinement of 𝑃𝑘2
 is the last step of iteration. For

refinement use Walshaw – Cross refinement algorithm.

This algorithm uses load distribution method to balance
the partition.

 Fusion Fission for Graph Partitioning

Fusion Fission is a recent method proposed by Bichot

C. E. [29, 30] for optimization of graph partitioning

problem, which was originally designed to solve

partitioning of European airspace. This method is

divided into two parts, an initialization part and loop on

the number of parts. Initialization is a two step process;

in first step a sequence of numbers is created which

indicates the number of parts to be created at each

iteration of loop on number of parts.In the next step of

initialization, initial partition of k – parts is created by
partitioner. Loop on the number of parts is n times

loop. First step determines required number of parts for

newly created partition. Fission step divides each part

of the current partition P in several parts and then in the

Fusion step temporary graph G’ is created in which

each vertex represents one of the parts of P. Next step

aims to create a new partition kifrom the graph G’, this

partition is projected onto the initial graph G. Last step

is the refinement of G using Global Kernighan Lin

Refinement (GKLR) algorithm. Fusion Fission method

increases the efficiency in comparison with the
multilevel method, but its computation time is very

long.

III. Swarm Intelligence

A swarm is huge number of uniform, simple agents

inter acting locally among themselves, and their

environment to permit global interesting behavior to

appear without central control. Swarm-based

algorithms are competent to generate low cost, fast,

and robust solutions to several complex problems.

These algorithms are known asnature–inspired

orpopulation-basedalgorithms. [31, 32]. Swarm
Intelligence (SI) can consequently be known as

comparatively new branch of Artificial Intelligence

which is used to model the collective behavior of

social swarms in nature such as ant colonies, bird

flocks, and honey bees. Even though these insects or

swarm individuals are fairly simple with limited cap

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 56

abilities on their own, they interact jointly with certain

behavior al patterns for achieving task sessential for

their survival. Swarm individuals or agents interact

directly or indirectly. Waggle dance of honey bees

[33] is an example of direct inter action through visual

or audio contact. In direct inter action occurs when
one individual changes the environment and the others

respond to the new environment. In direct inter action

is refer redasstigmergy, which basically means

communication through the environment. Pheromone

trail so fants which they depositon their way while

searching for food sources is an example of indirect

inter action . Thearea of research presented in this

depth paper focuses on Swarm Intelligence. In next

section, two of the most popular model so f swarm

intelligence inspired by birds flocking behavior and

ant‘sstigmergic behavior are analyzed in detail.

A. Ant Colony Optimization (ACO)

Ant Colony Optimization is inspired by the for aging

behavior fants. At the core of this behavior is the

indirect communication between the ants with the help

of chemical pheromone trails, which enables them to

find short paths between the irnest and food sources.

Blum [34] exploited this characteristic of real ant

colonies in ACO algorithms to solve global

optimization problems. Ant based solution

construction, pheromone update and daemon actions

are the algorithmic components involved in
metaheuristic of ACO. Dorigo [35] developed the

firstant colony optimization algorithm and since then

numerous improvements of the ant system have been

proposed. Ant colony optimization algorithm (ACO)

has strong robustness as well as good dispersed

calculative mechanism. ACO can be combined easily

with other methods; it shows well performance in

resolving the complex optimization problem. The

Travelling Salesman Problem is selected as example to

introduce the basic principle of ACO, and now several

improvement algorithms are developed for the problem

of ACO. This stochastic optimization method has been
successfully applied in a number of engineering as well

as real world problems. ACO algorithm imitates single

ant colony which constructs solution in the form of

parameters associated with problem.

 Principle and Model of ACO

Ant Colony Optimization (ACO) is a computational

method which iteratively optimizes a problem to

pheromone with regard to a given transition probability.

ACO optimizes a problem by having a updated

pheromone trails and moving these ants around in the

search-space according to simple mathematical
formulae over the transition probability and total

pheromone in the region.

At each iteration; of ACO generate global ants and

calculate their fitness. Update pheromone and edge of

weak regions. If fitness is improved then move local

ants to better regions, otherwise select new random

search direction.

Update ant pheromone and evaporate ant pheromone.
The continuous ACO is based on both local and global

search. Local ants have capability to move towards

latent region with best solution with respect to

transition probability of region k,

𝑃𝑘 𝑡 =
𝑡𝑘 𝑡

 𝑡𝑗 𝑡
𝑛
𝑗=1

 (6)

where𝑡𝑘 𝑡 is total pheromone at region k and n is

number of global ants.

Pheromone is updated using following equation

𝑡𝑖 𝑡 + 1 = 1 − 𝑟 𝑡𝑖 𝑡 (7)

where r is pheromone evaporation rate.

Probability of selection of region for local ants is

proportional to pheromone trail.

 ACO for Graph Partitioning

ACO algorithm uses pheromone trails of ants to

construct solution in the form parameters associated
with graph parts. Most of the ACO based graph

partitioning algorithms deals with the situations where

several ant colonies fight with each other in which each

colony represents parts in the partition. P. Koroceset al.

[36] initiated multi - ant colonies algorithm for graph

partitioning. In this algorithm grids representing world

of ants are covered by them, each grid is associated

with vertex of graph. Robicet et. al. [37] combined this

approach with multilevel method. These methods

provide very good partitions but computational time is

extremely longer than multilevel method. On contrary
F. Comellas [38] proposed single colony ACO

algorithm without multilevel composition, which is

very efficient for partitioning smaller graphs.

B. Particle Swarm Optimization (PSO)

Kennedy and Eberhart [39], developed swarm

intelligence model inspired by birds flocking behavior

called as Particle Swarm Optimization (PSO)

algorithm. The PSO has particles determined from

natural swarms by combining self-experiences with

social experiences using communications based on

iterative computations. In PSO algorithm, a candidate
solution is presented as a particle. To search out to a

global optimum, it uses a collection of flying particles

(changing solutions) in a search area (current and

possible solutions) as well as the movement towards a

promising area.PSO is a metaheuristic since it makes

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 57

hardly any assumptions about optimization of the

problem and hence it can search incredibly large spaces

of candidate solutions. More specifically, PSO does not

use the gradient of the problem being optimized.

Resemble to classic optimization methods such as

gradient descent and quasi-Newton methods; PSO does
not require that the optimization problem should be

differentiable.PSO can therefore also be used in

optimization problems which are partially irregular,

noisy, change over time, etc.

 Principle and Model of PSO

Particle Swarm Optimization (PSO) is a computational

method which iteratively optimizes a problem to

improve a candidate solution with regard to a given

measure of quality. PSO optimizes a problem by having

a population of candidate solutions and moving these

particles around in the search-space according to simple

mathematical formulae over the particle's position and
velocity. Each particle's movement is influenced by its

local best known position and is also guided toward the

best known positions in the search-space, which are

updated as better positions are found by other particles.

This is expected to move the swarm toward the best

solutions.

Consider a scenario that a group of birds is randomly

searching food in an area. There is only one piece of

food in the area being searched. All the birds don‘t

know exact location of food but after each iteration they

know the distance from food. Hence the best strategy to
reach to the food is following the bird which is nearest

to the food. PSO learns from this situation and uses it to

solve the optimization problems. In PSO, each single

solution is a ‗bird‘ in the search space called as

‗particle‘. All the particles have fitness values which

are evaluated using fitness function to be optimized and

have velocities that direct the flying of the particles.

The particles (solutions) fly through the problem space

by following the recent optimum particles. PSO is

initialized with a group of random particles and then

searches for optima by updating generations. In each
iteration, every particle is updated by following two

"best" values. The first value is the best solution

(fitness) which it has achieved so far. This value is

called pbest. Another "best" value that is tracked by the

particle swarm optimizer is the best value, obtained so

far by any particle in the population. This best value is a

global best and called gbest. After finding the two best

values, the particle updates its velocity and positions

with following equations,

𝑉𝑖𝑑 𝑡 + 1 = 𝑉𝑖𝑑 𝑡 + 𝑐1𝑅1 𝑝𝑖𝑑 𝑡 − 𝑥𝑖𝑑 𝑡 +

 𝑐2𝑅2 𝑝𝑔𝑑 𝑡 − 𝑥𝑖𝑑 𝑡 (8)

𝑥𝑖𝑑 𝑡 + 1 = 𝑥𝑖𝑑 𝑡 + 𝑣𝑖𝑑 𝑡 + 1 (9)

where:

𝑉𝑖𝑑 – Rate of position change of ith particle in

dthdimension and t denotes iteration count

𝑥𝑖𝑑 - Position of ith particle

𝑝𝑖𝑑 – Historically best position of particle

𝑝𝑔𝑑 - Position of swarm‘s global best particle

𝑅1and𝑅2are two n – dimensional vectors with random

numbers uniformly selected between [0, 1].

𝑐1 and𝑐2 are position constant weighting parameters

called as cognitive and social parameters respectively.

Memory update is done by updating𝑝𝑖𝑑 and 𝑝𝑔𝑑 when

following condition is met.

𝑝𝑖𝑑= 𝑝𝑖 if 𝑓 𝑝𝑖 > 𝑓(𝑝𝑖𝑑)

𝑝𝑔𝑑 = 𝑔𝑖if𝑓 𝑔𝑖 > 𝑓(𝑝𝑔𝑑)

where,𝑓(𝑥) is the objective function subject to

maximization.

Once terminated, the algorithm reports the values of

𝑝𝑔𝑑 and𝑓(𝑝𝑔𝑑) as its solution.

The most commonly used stopping criteria for

iterations are:

1. After a fixed number of iterations (or a fixed
amount of CPU time)

2. After some number of iterations without an

improvement in the objective function value (the

criterion used in most implementations)

3. When the objective reaches a pre-specified

threshold value and thus ultimately the solution is

obtained.

 PSO for Graph Partitioning

A limited work is being reported in literature addressing

GPP using particle swarm optimization technique. R.

Green et al. [40] combined PSO with Breadth First
Search (BFS) for partitioning large graphs. This

approach is based on communication between the

partitions and within the partition. Objective function is

to minimize inter partition communication and

maximize intra partition communication. This

approach is limited to canonical graphs shows

improved partitions with less computation time. Kapade

et al. [41] have proposed a robust image segmentation

technique, which combines discrete PSO and multilevel

graph partitioning algorithm to minimize undesirable

over-segmentation. Greedy graph growing partition is

used, which is based on employing the region
adjacency graph to improve the quality of

segmentation. The performance of the proposed

technique is evaluated through quantitative and

qualitative validation experiments on benchmark

images.

IV. Conclusion

This paper explains various optimization techniques

such as Simulated Annealing, Genetic Algorithm, Tabu

Search, Random Walk, Fusion Fission, Ant Colony

Optimization and Particle Swarm Optimization along

with their adaptation in graph partitioning. Simulated

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 58

Annealing is a general solution method where the

quality of result is reasonably good but due to large

neighborhoods not acceptable in k - partitioning. The

solution time is too long for larger graphs.

Genetic Algorithm (GA) belongs to a group of

evolutionary algorithm which is global search heuristic
technique inspired by evolutionary biology.

Optimization problems based on modifications cannot

be solved using GA due to poorly known fitness

function which generate bad chromosome blocks cross

over.

The tabu search is a metaheuristic technique in which

the selection of tabu moves generating the

neighborhood of a point under search is more problem

specific. Finding too many parameters can result into

large number of iterations and hence will not be

suitable for a large and complex graphs. Random Walk

does not use memory while working with a search
space and hence does not store any information about

previously visited locations of the search space. Faster

implementation of diffusion with running time

independent of k is still undetermined in RW. Fusion

Fission is a local search algorithm where iterative

improvements may take exponential time in partitioning

larger graphs.

Ant Colony Optimization is bio inspired metaheuristic

motivated by foraging behavior of ants.ACO produces

very good partitioning results when combined with

other techniques, but the solution time is too long which
ranges to hours even on the fastest computer. Particle

Swarm Optimization (PSO) shares several common

features with Genetic Algorithm. Both algorithms start

with a class of randomly generated population, both

have fitness values to evaluate the population, both

update population and search for the optimum solution

with random techniques. However, PSO does not have

genetic operators like crossover and mutation. Particles

update themselves with the internal velocity and also do

have a memory, which is important in algorithm. PSO

need to be coupled with other heuristic method to

enhance the performance and hence is very less used in
graph partitioning problems.

From the study, it is observed that particle swarm

optimization (PSO) seems to be comparatively better

optimization technique compared to others due to its

simple but efficient nature. It tries to optimize a

problem by an iterative method to improve a candidate

solution, with regard to given quality of measure. The

PSO particles move around the search space using

mathematical formulae over the particle position and

velocity, movement of each particle is influenced by its

own local best position and at the same time also
guided towards the best known position established by

other particle in the search space. This methodology

over the iterations is expected to move the swarm

towards the best solution.

V. References
[1] R.T Marler, ―Survey of multi-objective optimization methods

for engineering,‖ Springer, 2004.

[2] Kirkpatrick, S., Gelatt, C.D. and Vecchi, P. M., ―Optimization

by simulated annealing,‖ Science direct, vol. 220, pp. 671-680,

1983.

[3] H. Simon and S. Teng, ―How Good is Recursive Bisection,‖

SIAMJournal on Scientific Computing, vol.18, no.5, pp. 1436

- 1445, 1997.

[4] R. Banos and C. Gil, ―Multilevel Heuristic Algorithm for

Graph Partitioning,‖ in Proceedings of the European

Workshop on Evalutionary Computations in Combinatorial

Optimization, pp. 143 – 153, 2003.

[5] R. Banos and C. Gil, ―A Parallel Multilevel Heuristic for

Graph Partitioning,‖ in Journal of Heuristics, Vol. 10, pp. 315

- 336, 2004.

[6] C. Bichot,‖ Metaheuristic for Graph Bisection,‖ in

Proceedings of the 10
th
 ACM Genetic and Evalutionary

Computation Conference, pp. 1801 - 1802, 2009.

[7] V.Cerny, ―A thermodynamical approach to the traveling

salesman problem: An efficient simulation algorithm,‖ Journal

of Optimization Theory and Applications, vol. 45, no.1, pp.

41-51, 1985.

[8] Aarts and Korst, ―Simulated annealing and Boltzmann

machines,‖ Wiley Publication, 1989.

[9] D. Johnson, C. Shavon, and c. Aragon, ―Optimization by

Simulated Annealing: An Experimental Evaluation, Part – I

Graph Partitioning,‖ Operations Research Society of America,

Vol. 37, No. 6, pp. 865 – 892, 1989.

[10] C. Bichot,‖A new method, the fusion fission, for the relxed k –

wak graph partitioning problem and comparison with some

multilevel algorithms,‖ in Journal of Mathematical Modelling

and Algorithms, Vol. 6, No. 3, pp. 319 - 344, 2007.

[11] Goldberg DE., ―Genetic algorithm: search, optimization and

machine learning,‖ Addison Wesley Publishing Company,

1989.

[12] T. N. Bui and B.-R. Moon. Genetic algorithm and graph

partitioning. IEEE Transactions on Computers, 45(7):841–855,

1996.

[13] H. Muhlenbein and T. Mahnig. Evolutionary optimization ¨

and the estimation of search distributions with applications to

graph bipartitioning. International Journal of Approximate

Reasoning, 31(3):157–192, 2002.

[14] A. J. Soper, C. Walshaw, and M. Cross. A combined

evolutionary search and multilevel optimisation approach to

graph-partitioning. Journal of Global Optimization, 29(2):225–

241, 2004.

[15] J. G. Martin. Spectral techniques for graph bisection in genetic

algorithms. In Genetic and Evolutionary Computation

Conference, pages 1249–1256, 2006.

[16] Glover, F. and Laguna, M., ―Tabu search,‖ ch.3, ―Modern

heuristic techniques for combinatorial problems,‖ McGraw-

Hill Publications, pp 70-150, 1995.

[17] Michel Gendreau and Jean-Yves Potvin, ―Tabu Search‖,

Handbook of metaheuristics, International Series in Operations

Research and Management Science, 146, Springer Science

Business Media, 2010.

[18] Rolland, E., Pirkul, H. and Glover, ―Tabu search for graph

partitioning,‖ Annals of Operations Research. Vol. 63 pp.209-

232, 2004.

[19] C. Walshaw, ―Multilevel refinement for combinatorial

optimization problems‘‖. Annals of Operations Research, Vol

l31. pp. 325-372, 2006.

[20] P. Galienier, Z. Boujbel, and M. C. Fernandes, An Efficient

Memetic Algorithm for Graph Partitioning, in Annals of

Operations Research, pp. 1 – 22, 2011.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 59

[21] U, Benlic, and J. K. Hao, ―An Effective Multilevel Memetic

Algorithm for Balanced Graph Partitioning,‖ in 22
nd

IEEE

Conference on Tools with Artificial Intelligence, pp. 121 -

128, 2010.

[22] U, Benlic, and J. K. Hao, ―An Effective Multilevel Tabu

Search Approach for Balanced Graph Partitioning,‖ in Tans.

on Computers and Operations Research, Vol. 7, No. 38, pp.

1066 - 1075, 2011.

[23] R. Diekmann and C. Walshaw, ―Shape Optimized Mesh

Partitioning and Load Balancing for Parallel Adaptive FEM,‖

in Journal on Parallel Computing, vol.12, no.26, pp. 1555 -

1581, 2000.In Proc. Internatl. Conference on Parallel and

Distributed Systems (ICPADS‘09), pp. 150–157. IEEE

Computer Society, 2009.

[24] Henning Meyerhenke, ―Beyond good shapes: Diffusion-based

graph partitioning is relaxed cut optimization,‖ In Proc. 21st

International Symposium on Algorithms and Computation

(ISAAC‘10). Springer-Verlag, 2010.

[25] CE Bichot,‖A metaheuristic based on fusion and fission for

partitioning problems,‖ Parallel and Distributed Processing

Symposium, 2006. IPDPS 2006.

[26] CE Bichot,‖A new method, the fusion fission, for the relaxed

k-way graph partitioning problem, and comparisons with some

multilevel algorithms,‖Journal of Mathematical Modelling and

Algorithms 6 (3), pp. 319-344, 2007

[27] B. K. Panigrahi, Y. Shi, and M.-H. Lim (eds.),‖ Handbook of

Swarm Intelligence,‖ Series: Adaptation, Learning, and

Optimization, Vol 7, Springer-Verlag Berlin Heidelberg, 2011.

ISBN 978-3-642-17389-9.

[28] C. Blum and D. Merkle (eds.). Swarm Intelligence –

Introduction and Applications. Natural Computing. Springer,

Berlin, 2008.

[29] L´aszl´oLov´asz and Mikl´osSimonovits,‖ Random walks in a

convex body and an improved volume algorithm,‖Random

Struct. Algorithms, Vol.4, No. 4, pp. 359–412, 1993.

[30] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, ―A min-max

cut algorithm for graph partitioning and data clustering,‖ In

ICDM, pp. 107–114, 2001.

[31] H. Meyerhenke, B. Monien, S. Schamberger,‖Graph

Partitioning and Disturbed Diffusion,‖ Parallel Computing,

Vol. 35(10-11) pp. 544-569, 2009.

[32] Henning Meyerhenke, ―Dynamic load balancing for parallel

numerical simulations based on repartitioning with disturbed

diffusion,‖

[33] M. Belal, J. Gaber, H. El-Sayed, and A. Almojel, Swarm

Intelligence, In Handbook of Bioinspired Algorithms and

Applications. Series: CRC Computer & Information Science.

Vol. 7. Chapman & Hall Eds, 2006. ISBN 1-58488-477-5.

[34] C. Blum, Beam-ACO—Hybridizing ant colony optimization

with beam search: An application to open shop scheduling,

Comput. Oper. Res., Vol. 32, No. 6, pp. 1565–1591, 2005.

[35] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M.

Dorigo, ―Estimation based ant colony optimization algorithms

for the probabilistic travelling salesman problem,‖. Swarm

Intell., 3(3), pp. 223–242, 2009.

[36] P. Korosec, J. Silc and B. Robic, "Mesh Partitioning: A

Multilevel Ant-Colony-oOtimization Algorithm," in Parallel

and Distributed Processing Symposium, 2003.

[37] K. Taskova, P. Korosec and J. Silc, "A Distributed Multilevel

Ant Colonies Approach," Informatica, vol. 32, no. 3, pp. 307-

317, 2008.

[38] Comellas, F., Sapena, E., 2006, ―A Multiagent Algorithm for

Graph Partitioning. Applications of Evolutionary Computing,‖

Lecture Notes in Computer Science. Springer, 3907, pp.279-

285, 2008

[39] J. Kennedy and R. Eberhart, ―Particle swarm optimization,‖ in

the Proceedings of IEEE International Conference on Neural

Networks, Perth, Australia, Vol. 4, pp. 1942-1948, 1995.

[40] S. Gadde, ―Graph partitioning algorithms for minimizing

internode communication on a distributed system,‖ Ph. D

Thesis, 2013.

[41] S. D. Kapade, ―Swarm intelligence-based graph partitioning

for image segmentation,‖ 2015.

Authors Profile

Mr. Naresh Ghorpade is

working as Assistant

Professor in Mathematics at
Sinhgad College of Arts,

Science and Commerce,

Narhe, Pune, India. He has

18 years teaching experience

and published 03 research

papers in national and

international reputed

journals.

Dr. H. R. Bhapkar is

working as Assistant
Professor in Mathematics in

MIT ADT University‘s MIT

School of Engineering,

LoniKalbhor, Pune, India. He

has 18 years teaching

experience and published 16

research papers in national

and international reputed

journals. He has authored 103

books of Mathematics to

different universities of India.

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:2osOgNQ5qMEC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:2osOgNQ5qMEC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:9yKSN-GCB0IC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:9yKSN-GCB0IC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:9yKSN-GCB0IC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=p4-9JXoAAAAJ&citation_for_view=p4-9JXoAAAAJ:9yKSN-GCB0IC

